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Introduction

Classical variable selection

Two aims of variable selection: explanation and prediction

Linear regression case: Prune model

yi = α+
d∑

k=1

βkxki + εi , (i = 1, . . . ,n)

Formally: remove regressors for which βk equal to zero
Compromise between bias and variance

Also referred to as subset selection techniques
Focus on observational studies
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Introduction

Classical variable selection

Automated variable selection: all subsets and stepwise selection

All subsets: challenging when d large⇒ 2d models

Stepwise selection based on search algorithm & stopping criterion

Issues:
No guarantee that best model is found
No clear interpretation of significance of selected regressors
Select one best model? Or base inference on many good models?

Alternative: statistical model based on substantive knowledge

Often at least a(n initial) selection is needed (genomics,
proteomics,. . . )
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Introduction

Bayesian variable selection (BVS)

Bayesian variable selection based on:

Searching for most probable models (using model probability)

Parameter estimation rather than hypothesis testing

Issues:

Partly the same as for classical variable selection

Computationally more demanding

But: substantive knowledge can be implemented via the prior
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Bayesian variable selection

Notation, concepts and principles of BVS

Model notation: K = 2d models indexed by vectors γ

γ = (γ1, . . . , γd )
T : indicator vector of variables in model

Xγ : design matrix

βγ : dγ-dim regression vector

θγ : all parameters of model

Bayesian hierarchical model:

Prior of model: p(γ)

Prior parameters: p(θγ | γ)

Model: p(y | θγ ,γ)
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Bayesian variable selection

General principle BVS

Computation of posterior model probabilities p(γ | y):

p(γ | y) = p(y | γ)p(γ)∑K
j=1 p(y | γ j)p(γ j)

with
p(y | γ) =

∫
p(y | θγ ,γ)p(θγ | γ)dθγ

Bayesian principle:

Pick model(s) with largest p(γ | y)
(maximum a posteriori (MAP) model)
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Bayesian variable selection

Questions

1 What to take for prior probabilities p(γ)?

2 What priors for p(θγ | γ) (p(βγ | γ))?

3 For K large: What search strategies can be implemented to
quickly find the most promising models?
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Bayesian variable selection

Model priors

Equal probabilities: p(γ) = 1/2d

⇒ d/2-sized models are a priori preferred

Independence prior: p(γ | π) =
∏
πdγ (1− π)(d−dγ), (π ∈ (0,1))

⇒ for π small yields sparse models

Dependence prior: p(γ) = 1
d+1

( d
dγ

)−1

⇒ uniform probability on size of model

. . .

Model prior can steer the variable selection process and be
based on substantive knowledge (2nd part of talk)
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Bayesian variable selection

Approaches

MC3: exploring the model space⇒ sampling γ

Spike and slab:
exploring the parameter and model space⇒ sampling θ and γ

Lasso: estimating θ (shrinking β)
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BVS approaches

Outline

1 Introduction

2 Bayesian variable selection

3 BVS approaches
Sampling model space
Sampling model and parameter space
Estimating the regression parameters
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BVS approaches Sampling model space

MC3
(Raftery et al. JASA 1997)

Concept

Given that p(γ | y) (e.g. BIC approximation) has been computed:

Sample in space of models

Search for the best model(s)

Result: chain γ(1),γ(2), . . .

Rather model selection than variable selection

Possible if p(γ | y) is easy/quick to compute and d/K not too large

In second step θ must be sampled
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BVS approaches Sampling model space

MC3
(Raftery et al. JASA 1997)

Algorithm

Based on MCMC methods to sample from p(γ | y)

MC3: Model Composition using MCMC

MH-algorithm on space of models

Sample γ∗ in neighborhood of γ by

q(γ∗ | γ) = 1/d

Neighborhood: γ and γ∗ differ in one position

MH acceptance probability:

min
(

1,
p(γ∗ | y)
p(γ | y)

)
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BVS approaches Sampling model and parameter space

SSVS (George & McCulloch, 1993)

Concept

Exploration of p(β, σ,γ | y):

Mitchell and Beauchamp (1988): spike and slab prior

Spike: Dirac at 0 expressing βk = 0
Slab: Uniform prior expressing βk 6= 0

George and Mcculloch (1993): SSVS

Spike: Normal around 0 with small variance expressing βk = 0
Slab: Normal around 0 with big variance expressing βk 6= 0

Result: chain β(1), σ(1),γ(1),β(2), σ(2),γ(2), . . .

Yields subchain: γ(1),γ(2), . . .
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BVS approaches Sampling model and parameter space

SSVS (George & McCulloch, 1993)

Algorithm

Stochastic Search Variable Selection
βk |γk , c, τ2

k ∼ (1− γk )N(0, τ2
k ) + γk N(0, τ2

k c2),

γk |πk ∼ Bernoulli(πk )
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 Variable in the model
γk = 1

 Calibration of hyper-parameters c, τ2
k

needed
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c=10
delta=0.1
tau=0.002
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BVS approaches Sampling model and parameter space

SSVS (George & McCulloch, 1993)

Inference for variable selection

Highest posterior model (HPM) :
Select a model that has been visited most often

Median probability model (MPM) :
Select variables that appear at least in 50% of visited models

Hard shrinkage
Select variables with p(βk | y) “spread far from zero”
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BVS approaches Sampling model and parameter space

SSVS (George & McCulloch, 1993)

Alternative spike and slab models

Popular approach in genomic research

Variants:

Conjugate version:

βk |γk , c, τ2
k ∼ (1− γk )N(0, σ2τ2

k ) + γk N(0, σ2τ2
k c2)

SSVS2: spike normal replaced by Dirac

NMIG: Normal mixture of inverse gammas (Ishrawan & Rao, 2005)

. . .
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BVS approaches Sampling model and parameter space

Alternative BVS approaches

Reversible Jump MCMC (RJMCMC)

Combinations of SSVS, MC3, RJMCMC, etc.

. . .

MCMC-based approaches are computationally involved

Especially when d >> n as e.g. in genomics
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BVS approaches Estimating the regression parameters

Bayesian lasso (Park & Casella, 2008)

Concept

Classical lasso:

Minimize

(y − Xβ)T (y − Xβ) + λ

d∑
k=1

|βk |

Differential shrinkage of the regression coefficients: some regression
coefficients put to zero for λ large

⇒ Do not select variables, but shrink unimportant variables to zero

Bayesian lasso: take Laplace prior

p(β) =
d∏

k=1

λ

2
e−λ|βk |
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BVS approaches Estimating the regression parameters

Bayesian lasso (Park & Casella, 2008)

Hierarchical representation

Take conditional Laplace prior for regression coefficients

p(β | σ2) =
d∏

k=1

λ

2σ
e−λ|βk |/σ

Hierarchical representation of prior structure:

βk | σ2
βk
∼ N(0, σ2

βk
), (k = 1, . . . ,d)

σ2
βk

= σ2τ2
k

τ2
k ∼ λ2

2
e−λ

2τ2
k /2, (k = 1, . . . ,d)

σ2 ∼ p(σ2)
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BVS approaches Estimating the regression parameters

Bayesian lasso (Park & Casella, 2008)

Variations

Classical and Bayesian lasso:

Adaptive lasso: more differential shrinkage

Fused lasso: regressors have natural ordering

Grouped lasso: take grouping of regressors into account

Elastic net: compromise between lasso and ridge

Adaptive elastic net: adaptive version of elastic net

. . .

Lesaffre & Ročková (ERASMUS and KUL) Bayesian variable selection 24 / 25



                         

BVS approaches Estimating the regression parameters

End part I
The many regressors case

When d >> n:

Most methods break down

Many ad hoc combinations of existing approaches have been
suggested

Still computationally prohibitive
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